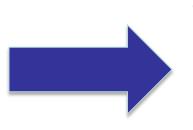


Hoesch Schwerter Profile GmbH

- From a Profile Manufacturer to a System Supplier -

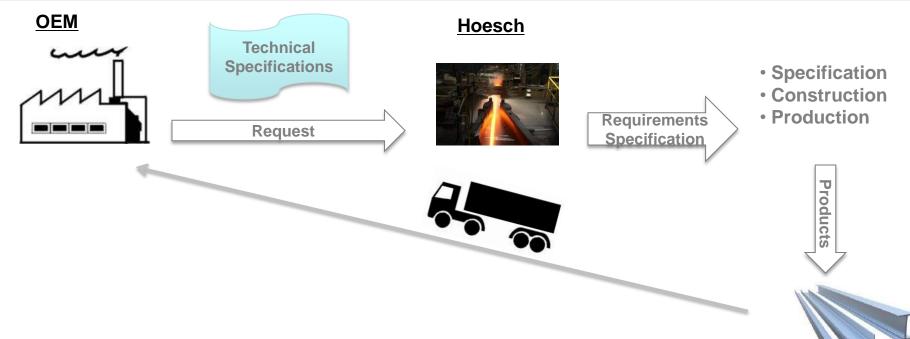
April 2016


Increasing Requirements

Market and Customer

Slide 2

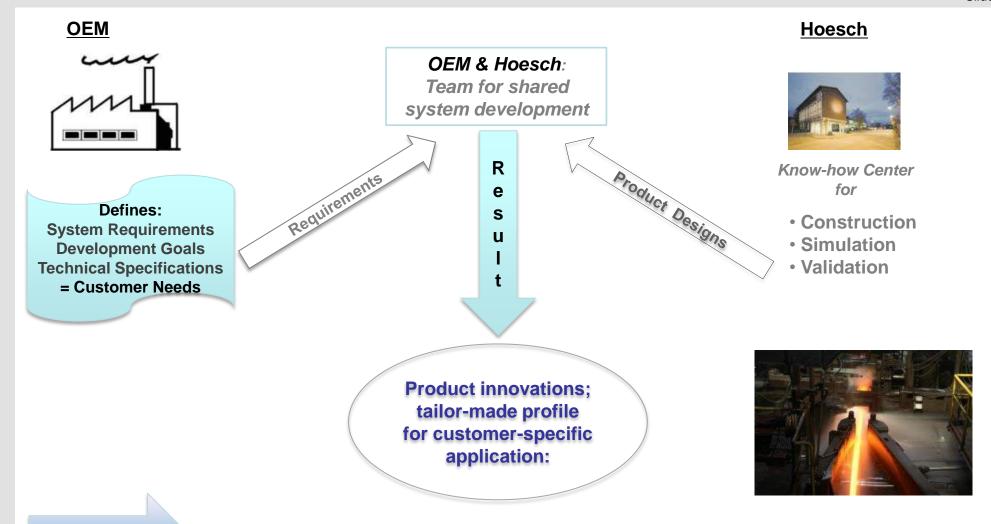
- Ever shorter product life cycles due to increased competition
- Growing system and product requirements
- Rising demand for more flexibility in construction
- Increasing product differentiation
- Expansion of innovative capacity
- Reduction of costs


Wide, solution-oriented range of services from development, construction, and manufacturing to delivery

Integration of the supplier in the development of technical concepts

Process Flow Profile Manufacturers

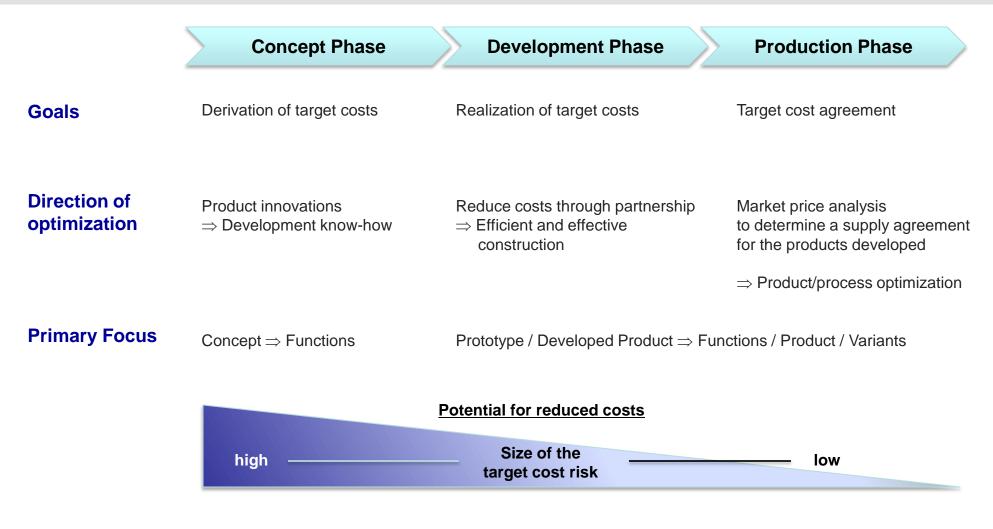
Product competence


- Customer sends a request in the form of defined product specifications
- Hoesch manufactures the product (profile) based on these specifications
 and delivers it to the customer
- The competence and value creation of HSP lies in the construction and production of the product so that it <u>fulfills the specifications defined</u>

Process Flow System Supplier

System and development competence

Slide 4



Developed together - Win-Win for all

Development at a System Supplier

System Supplier and Development Specialist

Development at a System Supplier

From the idea to the customer-specific system solution

- Perform research and development work together, including with external partners
- Continuous exchange of technological and design information
- Use of a wide variety of manufacturing processes
- Wide range of processing capabilities
- Custom logistics solutions
- Service and solution-oriented customer service

Development at a System Supplier

Oriented

Customer Oriented Product Development

Customer

Slide 7

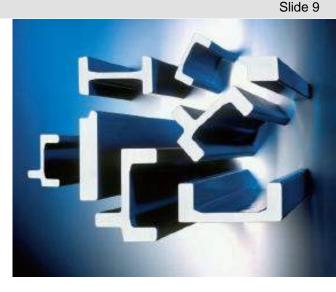
Product

Development

- From the idea to the customer-specific system solution -

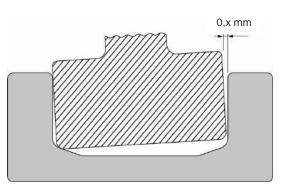
4 different manufacturing processes at <u>one</u> location

- ✤ Hot rolling
- ✤ Hot extruding
- Cold drawing
- SE-IMI® milling


One Stop Profile Shop

Custom design of

- > the basic geometry
- the individual features
- the tolerances

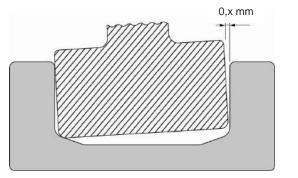


Restriction of specific features to enable optimization of costs in the value chain of the customer **Tolerances / Chamber Size**

Tolerance restrictions of up to 0.4 mm

Reduction of the roller diameter
 Simplified roller logistics / inventory management

Significantly lower costs due to lower stock of rollers and simplified assembly process



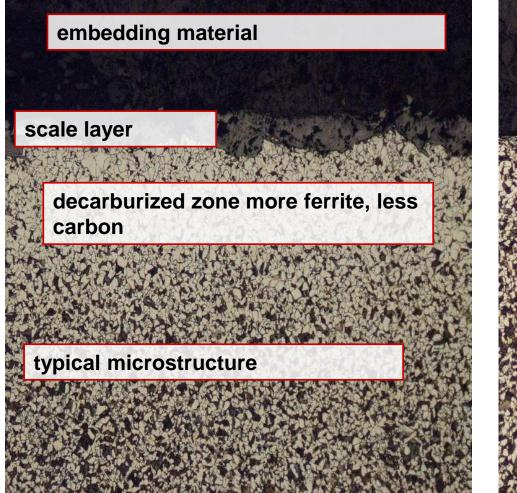
Tolerances / Chamber Size

> Further reductions

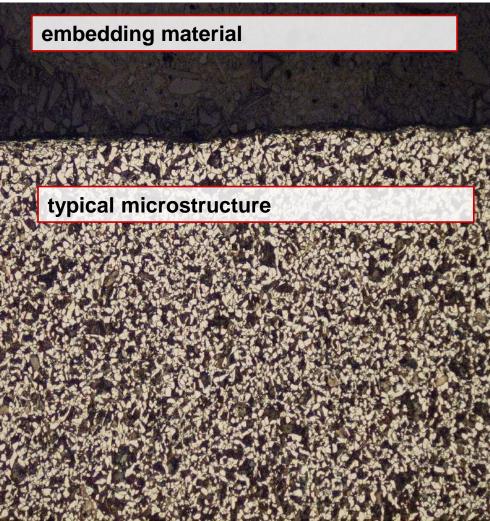
- Drawn profile
 0.3 mm absolute
- SE- M[®] 0.2 mm absolute

Removal of the decarburized layer
 Harder surface

Significant improvement of the wear properties

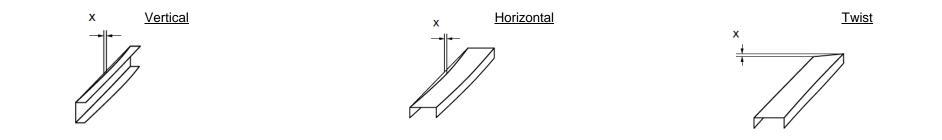

SURFACE DECARBURIZATION

Micro-section layer



Slide 12

Surface layer hot rolled profile



Surface layer SE-|M|® profile

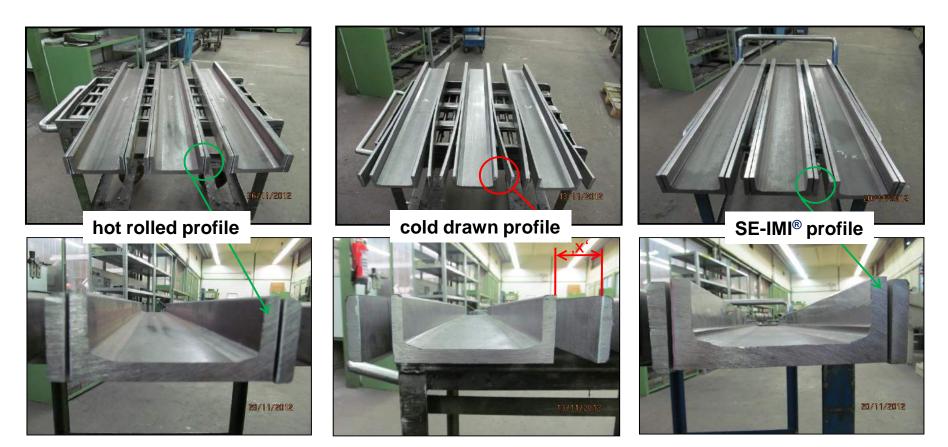
Straightness tolerance

- Straightness tolerance of up to 0.3 mm/m
- Twists of up to 0.4 %

using a straightening process that reduces residual stresses

No profile restraightening required any more
 Component re-straightening requirements significantly reduced

Internal Stresses


A comparison between cold drawn and SE-|M|® profiles

Results

Depiction of Plane 2 - vertical saw cut into the profile flanges:

The opening of the cuts is many times greater on the cold drawn profile than on the low stress hot rolled and SE-IMI® profiles.

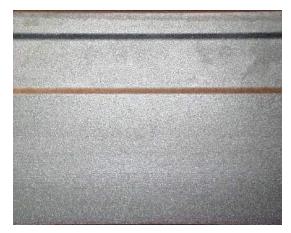
Precision of straightening

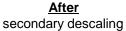
Status quo

Customer requirements:

Bow on length (on flat and on edge): max. 0,3 mm/m Twist: max. 0,4 mm/m (related to the width of the profile)

	I-beam 150 x 85 mm	I-beam 130 x 75 mm	I-beam 120 x 67 mm	I-beam 108 x 60 mm
Production stacking line	2.604 to	8.397 to	4.514 to	5.161 to
Bow on lenght (on edge)	94,6%	98,8%	96,7%	99,5%
Bow on length (on flat)	97,8%	98,2%	96,4%	97,6%
Twist	98,9%	100%	97,5%	100%


Surface



Slide 16

Before secondary descaling

- Smoothly structured roller surface without scale pits or scale patterns
 - In combination with restricted chamber tolerance, an optimal alternative to drawn profile designs

Steel Grades

Spot load pressure / weldability

Slide 17

forklift truck steel grades

550	1.1197		520
210	10	T.	27
1090] 25MnV5m	od	825
	-		CEV
C	Mn	V	CEV

500	1.0	870	430	
190	0	3	40 850	
1000] 17M	nV7		
	not	tested		
С	Mn	V	CEV	
0,18	1,60	0,12	≤0,60	

440 180	1.1	197 1	500 27
880] 25M	nV5 [825
C	Mn	v	CEV
0,26	1,30	0,08	≤0,60

2	/	Vallthick	ness > 18r	nm	W/	allthickne	ee < 19m	m
0	340							
-	940	16M	nV6mod	850	940	15Mn\	/5mod	850
1	163		03	40	163	0	2	40
2	470	1.	0590	410	470	1.0	590	410
,15	1,45	-	≤0,45	///	///			
C	Mn	V	CEV	999			90	
3 1	Cold dr		5	///	///		///	
1070	S355J		876					<i>9</i> 2
170	00		1Z	90	999	90	90	99
		79	55626		11			

Target area of the material properties

430	1.8902 01/02		370 40	
160				
860] 18Mr	18MnNb6		
С	Mn	V	CEV	
0.12	1.50	0,05	≤0,49	

355	1.0	570	360
145	1	8	50
710	S355	J2G3 🗍	875
	Hoesch	So-Grade)
C	Mn	V	CEV
0,11	1.40	0.05	≤0,45

Shortname

d) Min. surface hardness, d. decarburized and induction hardened (HV) e. e) Min. notch impact energy, KV at 0° C (J) f) A_{c3} temperature (C°)

b.	Var.
•	Kurznar

8

HWN = Hoesch Grade No.

a) Min. yield strength (MPa)

c) Permissible Hertz spot load

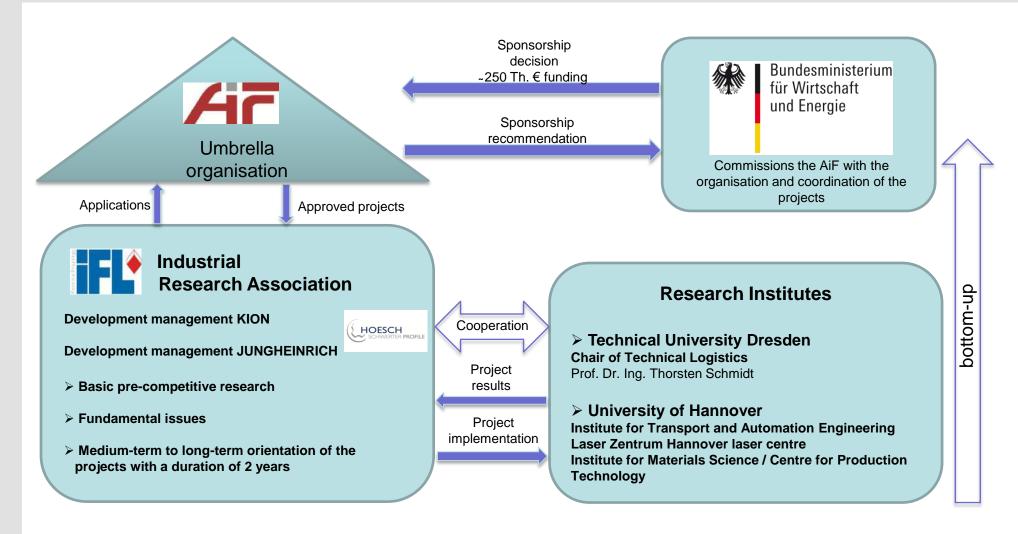
pressure, decarburized (MPa)

b) Min. hardness (HB)

c.	Kurzr	name	f.
с	Mn	V	CEV
1			

HWN

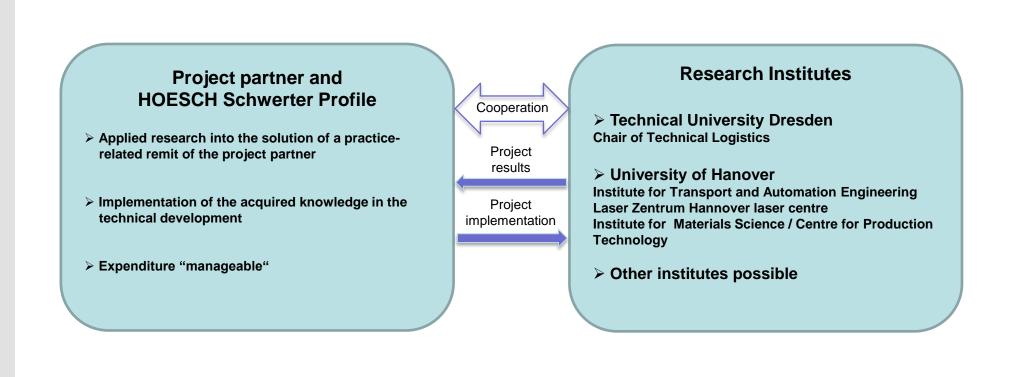
weldability


Var.: Hoesch variant No.

permissible hertz spot load pressure

Research

Sponsored Research Projects



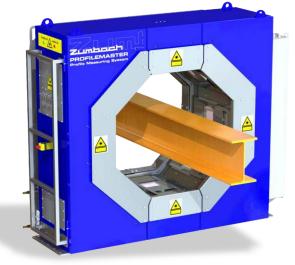
Research

Customer applications-related developmental work

Next consequent step for the process optimization

Slide 20

- Hi-Tech, Non-contact Profile Measurement Systems for In-Line Use of hot rolled profile measurement -


Inline profile measurement of hot rolled profiles

Significant advantages

- faster start-ups, especially for new profiles
- continuous controlling process with documentation
- · low scrap and higher level of product quality
- higher transparency of all processes
- automatic documentation / reporting under consideration of all monitored datas
- Elimination of sampling inspection / manual inspection
- Measurement of all kind of cross sections by using
 8 cameras
- high scan rate with 200/sec.
- precise measurement up to \pm 0,01 mm

